Exercise 78

Find the value of c such that the line $y=\frac{3}{2} x+6$ is tangent to the curve $y=c \sqrt{x}$.

Solution

We see that the slope of the tangent line is $3 / 2$. Take the derivative of the equation for the curve.

$$
y^{\prime}=\frac{d}{d x}(c \sqrt{x})=c \frac{d}{d x}\left(x^{1 / 2}\right)=c\left(\frac{1}{2} x^{-1 / 2}\right)=\frac{c}{2} x^{-1 / 2}
$$

Set the derivative equal to $3 / 2$ and solve for x.

$$
y^{\prime}=\frac{c}{2} x^{-1 / 2}=\frac{3}{2} \quad \rightarrow \quad x=\frac{c^{2}}{9}
$$

This is where the tangent line intersects the curve; that is, the equations that represent them are equal when $x=c^{2} / 9$.

$$
\text { At } x=\frac{c^{2}}{9}: \quad c \sqrt{x}=\frac{3}{2} x+6 \quad \rightarrow \quad c \sqrt{\frac{c^{2}}{9}}=\frac{3}{2}\left(\frac{c^{2}}{9}\right)+6
$$

Solve this equation for c.

$$
c=6
$$

Therefore, $y=\frac{3}{2} x+6$ is tangent to the curve $y=6 \sqrt{x}$ when $x=4$ as the following figure illustrates.

